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A single-equation model of long-wavelength drift waves has been
used to study the behavior of turbulent plasma fluctuations in the
presence of sheared flow. These waves, which have a real frequency,
are calculated using a time-evolution algorithm that includes flow
effacts, Lincar lests show that growth rates and llow-shear damping
agree with the predictions of analytical theory, even in the presence of
a large real frequency. Criteria for selecting the proper spatial and temn-
poral resclution for nonlinear calculations are described. Convergence
tests show that, within these fimits, solutions have a weak dependence
on variations of these resclution parameters. Tests of energy conserva-
tion indicate that calculated solutions remain accurate for large num-
bers of time steps.  © 1994 Academic Press, Inc.

L INTRODUCTION

The behavior of turbulent fluctuations in the presence of
a sheared flow is a subject that has great potential for
advancing understanding of magnetic piasma confinement
[1]). Experiments with different magnetic configurations
naturally develop similar shear layers in the poloidal flow at
the edge [2]. In each case, the laycr marks the boundary of
the region of good confinement and controls local fluctua-
tion levels and transport. The transition from a low confine-
ment regime {L-mode) to a high confinement regime
(H-mode) [3] is characterized by an increase in poloidal
flow shear [4] and a reduction in fluctuation level {5]. A
scaling theory of fluctuation suppression by poloidal flow
shear [6] and a lincar analysis both predict that turbulence
should be strongly stabilized by a sheared poloidal flow.

* Rescarch sponsored by the Office of Fusion Energy, U.S. Department
of Energy, under Contract DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.

' Supported by an appaointment to the U.S. DOE Fusion Energy
Postdoctoral Rescarch Program administered at Oak Ridge Insiitute for
Science and Education.

0021999194 $6.00 160

Copyright © 1994 by Academic Press, Inc.
All nights of reproduction in any form reserved.

We have studied the effect of a constant flow shear on
fluctuations using a single-equation representation of
plasma drift waves [7]. These arise naturally from equi-
librium density and temperature gradients and have
cxperimentally relevant values of real frequency. Numerical
calculations showed the predicted damping of the fluctua-
tions by the flow shear during the linear phase, but the
saturation level in the nonlinear regime remained unaffec-
ted. Even flow shear large enough to produce complete
linear stability had no effect on the saturation level
generated nonlinearly. This numerical result confounded
expectations from scaling theory and nonlinear analytic
theory and forced a reexamination of the latter, We found
that spatial structure in the nonlincar couplings between
long-wavelength and short-wavelength modes near a fow-
order rational surface could account for these observations.
Further numerical calculations with a single rational surface
reinforced this physical picture.

Throughout this investigation, numerical calculations
have played a key role in advancing our understanding of
the physics. There is already a substantial body of numerical .
results for drift waves in two [8-10] and three [11] dimen-
sions. In our case, the introduction of a strong flow shear
greatly affects the resolution requirements. Time-step
restrictions arise owing to large local flows. The radial grid
size must be adequate to handle a singularity in the equa-
tion, In this paper, we undertake a detailed study of the
numerical calculations. The implicit linear algorithm will be
shown to give accuraie solutions for unstable modes with a
real frequency over a wide range of time-step sizes. The
predicted damping effect of flow shear will also be
reproduced. Resolution requirements for nonlinear calcula-
tions will be described, and results from convergence and
energy-conservation tests will show that it is possible to
address the flow-shear issues and obtain converged and
accurate results with reasonable resolution. Thus, this algo-
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rithm proves to be a useful too! for studying fluctuations
with nonzero real frequency in the presence of strong flow
shear.

The boady of the paper is organized as follows. Section 1I
presents the model equation and the solution geometry. The
discrete algorithm and its implementation are described in
Section IiI, along with the calcuiation of numerical errors.
Section IV details basic linear tests. In .Section V, issues
of spatial resolution are addressed, while Section VI is
concerned with the size of the time step. Conclusions are
presented in Section VIL

II. EQUATIONS AND GEOMETRY

The single model equation to be solved was derived as a
paradigm of plasma drift waves at long wavelengths [7].
The plasma ions are taken to be a cold fluid. Their dynamics
are governed by a continuity equation for the density, and
equations for momentum balance paraliel and perpen-
dicular to the magnetic field. A collisional drag is used in
the parallel momentum balance equation to provide lincar
damping of sound waves. The electron physics is primarily
determined by the Boltzmann relation between density and
potential fluctuations: #,/n,, = |e| §/T,, with equilibrium
electron density #,, and electron temperature T,. Electrons
trapped in the magnetic ripple along a field line contribute
a small phase shift between density and potential that drives
wave growth. The shift is derived from a laminar kinetic
equation in the dissipative trapped electron regime {12].
Attention is focused on strongiy dissipative modes with long
wavelengths. Quasineutrality is then used to equate electron
and ion density fluctuations. Finaily, the added assumption
of highly collisional ions permits reduction to a single equa-
tion, which is tractable both analytically and numerically.

This equation is solved in slab geometry. The straight slab
is a local approximation to a torus, centered on minor
radius r =r, (Fig. 1). With a major radius given by Ry, the
tocal inverse aspect ratio is defined to be e=ry/Ry <.
Within the siab, position is defined with respect to a set of
rectangular unit vectors related to the local toroidal direc-
tions: X to the direction of equilibrium gradients, y to the
poloidal direction, and # to the toroidal direction. The x
coordinate, defined by x =r — ry, covers a radial interval of
size a: —{a/2) < x < +(a/2). At the boundaries, fluctuating
quantities are required to go to zero. The y and z coor-
dinates can be related to 6 and {, the poleidal and toroidal
angles:

y=r08= z=RO€- (1)
Limits on y and z are chosen to correspond to a fuil cycle of
the angular coordinates, and fluctuations are required to be
periodic in these directions.
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FIG. 1. Slab geometry {left}, and its relation to toroidal geometry
around minor radius r = r, (right).

The equilibriom magnetic ficld is given by B=B,Z +
B,(x) J, with constant B, and

B(x)=B,(ry)+ By —.

- @)

X
5

The x-dependence of B, permits the “twist” of a field line to
change, thus incorporating magnetic shear into the model.
A related quantity, safety factor g(x) = &Bo/B,(x), is used to
define the characteristic shear length: L = (¢%/e)(dg/dx)~ L.
We choose g, = 1.5 at r = ry, so that the center of the slab is
a rational surface (g is a rational number there). Note that
the x-variation in g permits calculations with multiple
rational surfaces.

Other equilibrium quantities are specified by their
magnitudes and scale lengths. These are held constant in the
slab. Scale lengths for electron density, n,, and tem-
perature, T,, are defined to be L,=nq{dn.q/dx)™" and
L,,=TJdT,jdx)~", respectively. When an equilibrium
velocity is introduced to study flow-shear effects, a profile
linear in x is used:

(3)

These equilibrium profiles are also held fixed in time. This
prevents a fluctuation-driven relaxation of the instability
drive and ensures that the nonlinear evolution is dominated
by turbulent processes.

Now we can write the specific form of the drift-wave
equation for the given geometry and equilibrium, The time
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evolution of normalized ion density fluctuations # = A, /n 4 is
governed by

d _ . on ' et .
E(H*prin)-F V*,,a-i-DkEy—z—v—iVﬁn

D, o\ .
—p,C, ,:Vl (V:n .3;) xz} -V A=0.

Paraliel gradients (V) are defined relative to B, and per-
pendicular gradients (V, ) are defined relative to Z. The basic
time and length scales are the cyclotron frequency Q.=
le| By/m; and gyroradius p,=c,/Q, for ions of mass m,,
where the sound speed is ¢, = (7,/m,)"2. Once lengths and
times have been normalized to these scales, the rest of the
problem can be determined by specifying a few dimen-
sionless parameters. Values for those parameters independ-
ent of L, are listed in Table I. Parameters that vary with L,
are specified in Table II, for the two values of L, considered.

The role of each term in the above equation can be iden-
tified. The convective derivative in the first term gives the
time evolution of the fluctuations. It also contains the equi-
librium poloidal velocity

4)

a

7
=a+ Vo(x)a. (5}

2w

The second term is the diamagnetic drift, with electron drift
velocity ¥V, =c,p,/L,. This contributes the real part of the
frequency. The term after this is the instability drive. The
coeflicient D, is related to the nonadiabatic response of the
trapped electrons. It is most easily expressed in Fourier
space, in terms of poleidal wave number (k).

Dy

D=— "%
T+ (ky Do/ V ()

(6)
TABLE I

Values of the Parameters That Characterize the Geometry
and Equilibrium in the Numerical Calculations

SIDIKMAN, CARRERAS, AND GARCIA

TABLE 1I

Values of the Parameters That Vary with L,/L,,, for the Two
Cases Considered in the Numerical Calculations

Parameter Large L /L case Small L,/L, case
' Lﬂ Ln
Density scale length ;—- =913 p_= 276.7
. D D
Drive strength 2 =233%x10"! 0 —254%x107?
CsPs Cifs
) . Py L Fa s
Velocity magnitude - L30x 10 . =433x10
E =260x 102

Cy

Normalized
shearing rate

Q,(m=21)=044 Q,(m =40) =029

(m from fastest-
growing mode)

2. (m=21)=088

Parameter Normalized value
Local inverse aspect ratio e=01
Local minor radius ?: 276.7
N LJ

Magnetic shear length p_= 5534.0

. Ly
Velocity shear length F-: 5.5
Yon collision frequency % =416x107°

The constant D, includes the fraction of trapped electrons
(\/E ), their effective collision frequency (v.r), and
He = Ln/L Te :

Do=15 /e n,(V2,/ver). (7)

Next comes the collisional damping of parallel sound waves
by ions with collision frequency v;. The final term is the con-
vective nonlinearity arising from the nonadiabatic electron
response. It is worth noting that the equation contains no
viscosity or other form of “artificial™ dissipation. Short-
wavelength modes are stabilized by the combination of
collisional dissipation and decreased drive, given the form of
D, defined in Eq. (6). These stable modes then act as the
energy sink.

Numerical solutions of the discrete form of the model
equation will develop errors due to finite spatial and tem-
poral resolution. Questions of accuracy can be addressed by
considering an independent evolution equation. One such
equation governs the evolution of the energy:

E=1}{ & +p2 |V, 1), (8)

It is obtained from Eq. (4} by multiplying by # and integrat-
ing over space:

dE 5 o2 2o a2
I=jarxp,c((—3;) —v—ijd x (V1)

dVy (OF oA
2 g3 0" 9
+p‘dedx (ayfix)' ®)
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On the right, the first integrai is associated with the
instability drive; it is an energy source (SQ). The second
term comes from collisional damping; it is an energy sink
(SK). The third integral (V'C) comes from the convection of
the z-component of vorticity (—p2V? ) by the equilibrium
flow. The nonlinear contribution

. D, of
6lE|nonlmearE 0,c, J d3x A [VJ. ( k fl) 5

— V. i 10
V*,,ﬁy XZ] 1 h (10)

is identically zero. Energy is the only quadratic form conser-
ved by this nonlinearity. Error accumulation in numerical
solutions will be checked by monitoring energy conserva-
tion, using both Eq. (9) and Eq. {10).

L. NUMERICAL IMPLEMENTATION

Numerical solution of the model equation requires the
definition of a discrete computational domain. In the y- and
z-directions, we transform to the periodic angular coor-
dinates defined in Eq. (1). Then the density fluctuations can
be represented by a discrete Fourier series, with the mode
numbers m and n related to the wave numbers k,=my/r,
and k.=n/R,:

A(x, 8,0)=3 Y [fiy.{x)cos(mb+nl)

m n>{

+ 7, _p{x)sin{m8 4+ n{)]. (11)
The differential operators acting on these fluctuations take
the form

52 2 1
V=2 Ve, (2-D) a2)
m g

Loaxt rl

Modes with m/n = g(r,) can resonate with the magnetic field
at rational surface r=r,, since they have k=0 there.
Operations are performed exclusively in (m, n) space, and
the results are stored in spectral form. Those pairs of modes
that couple to cach m, n are identified. As a result, the non-
zere contributions to the nonlinear term for a given m, 7 can
be calculated directly from the Fourier components of these
mode pairs [13].

The x-dependent Fourier components are represented on
a discrete grid. First and second derivatives are calculated
using three-point finite difference formulas. These permit
unequal spacing between grid points, so the grid can be con-
centrated in regions with large gradients. A sparse grid has
been used only at the edges of the slab, away from any reso-
nant surface in the calculation. Equal spacing is used in all
regions with appreciable fluctuations, and the three-point
formulas reduce to centered differencing.
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The discretized equations are advanced in time using a
code called DTEM, a version of the FAR code [14]
modified to accommodate sheared slab geometry and the
single equation for a single field. Every (m, n) mode is
linearly uncoupled from all the others in this geometry.
Thus, the discrete form of Eq. (4) can be written symboli-
cally for a given mode as

X mn
"™t

L =R X n+ Npy o X). (13)

X,. . 1s a vector whose elements are the values of 7, ,, at the
radiai grid points; L, ,, and R,, , are matrix operators with
a tridiagonal structure resulting from the three-point radial
differencing. The nonlinear term is represented by the vector
N,... whose elements are the convolution values at the
radial grid points. Two different algorithms have been used
to evolve X,, , by stepping over intervals of size 4¢. In both,
the advance from step / to step i + 1 is linearly implicit and
nonlinearly explicit. The nonlinearity in the “one-step”
scheme is evaluated at the old step i

At :
(Lm,ﬂ “_2"' Rm,n) X;nTnl

I3 . )
= (L,,,_,, +%Rmv,,) X, +4tN, (X). (14)

Solutions are accurate to order 4. In the “two-step”
algorithm, there is first an advance to i+ 3. The nonlinear
term in the second step is then evaluated at this time, giving
solutions that are accurate to order (A41)%

At

At . . X
[l] Lm.n__i Rm.n) X:v:.n”2=Lm,nX:n,n+? Nm,n(X‘)
t .
[2] (Lmn_dtRmn> X’;n“-nI
B ) s N
At i i+ 1/2
= L,,,',,+3R,,,',, X AN, (X7,

(15)

Since the linear part of either scheme is implicit, any linear
calculation should be numerically stable for all Ar. The size
of the time step is determined by the need to resolve a par-
ticular physical time-scale. In general, nonlinear processes
impose the greatest restrictions. Section VI will address this
issue in detail.

In order to produce a meaningful test of energy conserva-
tion, the integrals in Egs. (9} and (10) must be evaluated in
a way that inverts the specific form of differencing used in
the model equation. This minimizes the amount of error
introduced by the finite resolution of the integration scheme
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itself. This point can be illustrated by a calculation of the
nonlinear contribution to the energy evolution, defined in
Eq. (10). As stated there, the result should be zero. Inverting
the time evolution requires multiplying the nonlinearity vec-
tor N,, , by the fluctuation vector X, , at the same time step.
For the radial integration, we define a uniform grid with
J+ 1 grid points, so that Ax=a/J and x,= Ax(j— J/2) for
Jj=0, ., On this grid, the Fourier components can be
represented as f;=X,, .(x,} and g;=X_,, _,(x,) and the
convolutions as F;=N,, ,(x;) and G;=N_, _,(x;). Then,
the proper form for the discrete integral at time step s is

3 Elnonlmear (2n F‘oRo)Z z z dx f, +ngj)’

m n>0 j=1

(16)

where s =i for the one-step scheme and s =i + 3 for the two-
step scheme. With centered differencing, the terms in the
radial sum take the form

Al = 0, CJ+1_CJ—1)
-f:'FJ““( IAx cj+bj YTd4x f_r

fj+1—f;_1

24x

+b,c; (17)

where b, and c; are Fourier components for modes which
beat to m, n. The third term in (f;F;) does not contain f;.
However, there are contributions with f; from the corre-
sponding terms in (f;,_,F, ) and (f,,  F;, ). For the dis-
crete integral of Eq. (16) to sum to zero, as required by
Eq. (10), all contributions proportional to f; must be able
to add directly over the interior grid points. Thus, an
unweighted sum over radial grid points properly inverts the
centered differencing used in the discrete equation.

Once the integral has been defined in this way, Eq. (16)
can be used to study the effects of finite spatial resolution on
energy conservation. Even though the discrete integral
properly inverts the spatial differencing, any real caiculation
will never vanish exactly. Choosing maximum and mini-
mum m and » introduces an error through truncation of the
Fourier sums. When contributions from radial grid points j,
j—1,and j+ 1 are summed, it becomes clear that compiete
inversion of the bracket in Eq. (17} requires ¢;=
(c;41+¢;—1)/2 and b= (b;,,+b,_,)/2. Failure to satisfy
these relations produces an error that depends on Ax. These
instantaneous errors can be accumulated over the time
evolution to provide a measure of the violation of energy
conservation caused by spatial discretization. The “spatial
discretization error” at time ¢ = I At is defined from Eq. (16)
as

(0E)sp =

Z At (6 E,nonlmear) (18)

1
E(IA)
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where E(t) will be defined in Eqs. (19)-(20). Since the com-
ponents in Eq. (17) are all evaluated at the same time step,
the spatial operations produce ne term of order 4t in the
integrand. Integration then ensures that temporal dis-
cretization (nonzero At) makes a higher-order contribution.
The spatial discretization error depends most sensitively on
the number of components in the Fourier representation
and the size of Ax. Thus, it can be used to monitor the
accuracy of numerical solutions as spatial resolution is
varied.

A second test of energy conservation comes from evaluat-
ing Eq. (9) with the numerical solutions. At time step i, the
radial integrals giving the contribution of each component
to the energy (E), source (SO), sink (SK), and vorticity
convection {VC) are properly defined by

2
o]

(19)

J 2
=Y 4x [pf(m2+(1 =

J=1

e, (2]

Fo

ko= £ <[ () (r5)7]
VCm,,,=p§( )ild (Z2L=) e,

with radial derivative /' = (f;— f,_, )/Ax. Integrals over the
other two directions are transformed into Fourier sums. The
energy becomes

EGidt)=(mroRo) Y. Y. (EmntE_pm _0).

m n=>0

(20)

The other terms are similarly defined, but with 2a%, R,
multiplying the Fourier sums. Finite spatial and temporal
resolution in the numerical solutions produces an
imbalance between dE/dr and the energy transfer TR=
SO — SK+ VC. We integrate this imbalance to obtain the
“energy conservation grror” at t =171 At

E(I Aty — E(0 At (TR(I A TR(0
(5E)EC=(( 1) ())__z( (I 40)+ ())

E(I A1) 2 E(I At)

E(f A1) 1)

f—1

Y. At TR(i 41).
i=1

This measure of the violation of energy conservation comes
from the time evolution of a quadratic quantity. Since the
terms are evaluated with fluctuations from an independent
evolution equation, this error should be more sensitive to
the effects of nonzero A¢ than the spatial discretization
grror. Thus, it can detect inaccuracies introduced by both
spatial and temporal discreteness. In future sections, the



DRIFT WAVE TURBULENCE WITH SHEARED FLOW

energy conservation error will be used to monitor error
accumulation as a function of time step.

The DTEM code that implements this numerical scheme
has features that allow for a natural extension of the
problem. For example, the mode couplings produced by the
f-dependence of a toroidal magnetic field can be incor-
porated in this slab geometry. The block structure of the
L, .and R, , matrices has been arranged so that all values
of m for a particuiar n are grouped together. Then, when
B, = By(1 —¢cos 8} is introduced to represent the toroidal
ficld, the coupling of poloidal harmonics m for a particular
toroidal mode # is readily accommodated. In addition, it is
easy to increase the number of equations and variables used.
Elements in the L, , and R,, , matrices are assigned by sub-
routings called “blocks.” These subroutines catalogue
matrix locations by equation number, variable number, and
number of derivatives. Once the required storage locations
have been defined, new equations can be coded exactly as
written, by subsequent calls to blocks. All of this permits a
large amount of flexibility.

IV. BASIC LINEAR TESTS

As a basic test of the numerical scheme, we compare
calculated lincar solutions to the predictions of analytic
theory. The analytic solutions have been obtained from
standard drift wave theory [15], modified to include the
effects of a velocity profile. The dispersion relation for the
Doppler-shifted frequency @ =w—k, V(r,) at rational
surface r, is

2 2.2
B = —x 2[1+ik"Dk—i(€"pj)
1+kyps w*n Wk

i+1\ [@ 02
-eren(G5) Vo)

(22)

where w,, =k, V,, is the drift frequency, / the radial mode

number, and
We=w,,vi(p, L.k, (23}

gives the mode width. Fiow shear introduces an eigenfunc-
tion shift [7]

= Wi0,/2p7, (24)
related to the normalized shearing-rate
Qo=k, VoW, /0y, (25}

which lcads to a new damping term in Eq. (22) (third term
in bracket).
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FI1G. 2. Analytic growth rate y and numerical eigenvalue Re{2) for the
{inear model, as a function of poloidal mode number m. The agreement is
good with flow shear ({2, = 0.29) and without (£2,=0.00), for small L,/L,
parameters.

Results from analytic and numerical calculations are in
excellent agreement. The analytic results were obtained
from Eq. (22} with /=0. Numerical results came from the
linear part of Eq. (14) with a large time step: 2, 4¢ = 10,000.
Small L /L, parameters were used in both cases. For grow-
ing modes, the analytic growth rate y and numerical eigen-
value Re(A} agree well at all m (Fig. 2). This holds both with
and without flow shear, implying that the additional damp-
ing calculated for the numerical solutions is the same as that
predicted analytically. Good agreement is also evident for
the corresponding real frequencies, w, and Im(4) (Fig. 3).

Flow shear produces the predicted eigenfunction shift.
The size of the shift decreases with increasing m, with
o< p, Tor 2,=029 (Fig. 4). The minimum ¢, gives an
upper limit for the radial step size. Although the fundamen-
tal scale length in the problem is o, we must use Ax < £, to
resolve flow-shear effects properly. We choose 4x=0.10p,,
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FIG. 3. Amalytic rea! frequency w, and numerical eigenvalue Im(l)
for the linear model and small L /L, parameters, as a function of poloidal
mode number m. Good agreement is also obtained in the Q. =0.29 case.
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FIG. 4. The flow-shear-induced cigenfunction shift, as a function of
poloidal mode number m. The analytic and numerical results agree well,
for 2,=0.29 and small L /L, parameters.

in general. Other issues of radial resolution will be taken up
n Section V.

One useful property of the implicit lingar algorithm is the
existence of an optimal time step that greatly accelerates
convergence to a particular eigenvalue, This has already
been documenied for purely growing modes [14], but it
also holds for drift waves, which have a real frequency. To
see how this property follows from the ailgorithm, consider
the eigenvalue problem equivalent to the linear part of
Eq. (13), with cigenvalue 4, ,,:

Al Lmn X n) = R Xy (26)

For a given m and n, there is a set of radial eigenmodes
characterized by different values of the index /. Assuming
that the eigenvectors X, form a complete and nondegenerate
set, iteration using the linear part of Eq. (14) will cause each
to evolve with amplification factor |4,| = | X1/ X!

At|? AN ; 41y’
1+3.13' _(1+'Y '5‘) +(Q)R'?)

ae| A2 , AN\Y
1—1,2 (1—)1 2) +(G)R-2—)

Here, the eigenvalue 1, has been related to the growth rate
7' and real frequency @/, of the original initial-value
problem: i,=7y'+iw’. The optimal time step At°"'=
2/[(7% + (w%)?]" maximizes {4,|. In the purely growing
case (w’ = 0), using 4¢°P* = 2/y for any / makes the corre-
sponding |A4,| singular. Growth of the chosen X, then
dominates, and convergence to A, occurs within a few steps.
In the present case, ¥ < w’; leads to a finite maximum in
|4,| at 4¢°" and broadens the resonance. The solution con-
verges to /=0, for which the maximum |4,] is largest, over
a range of time-step sizes (Fig. 5a). Use of 4¢°P* ~ 2/w’ still
gives the fastest convergence, but the number of steps

|A.'|2=

(27)
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FIG. 5. {(a) For m, n=21, 14 and large L /L, parameters, numerical
Re(1) agrees with the analytic y over a large range of A1, At an optimal 4¢,
the number of steps for convergence is a minitnum. No converged solution
exists for 2, 4¢>7x 10% (b) For large At, Re(4) matches the analytic
growth rate for m, n =21, 14 and large L /L, parameters. For small 44, it
also agrees with the real part of the numerical growth rate of Eq. {28), thus
giving the instantaneous time evolution.

required is now of the order w$,/7°. Thus, time-step size can
be used to optimize convergence of the linear algorithm,
even with a real frequency.

For the linear phase of a nonlinear calculation, con-
vergence is less important than the instantaneous evolution.
Tteration of the linear algorithm with A< 4:°P will
calculate this correctly. For A, , 4r<1, the amount of
amplification per iteration is the same as exponentiation at
rate A, ,. That is, the eigenvalue is close to the numerical

growth.rate
At
: 1+ 4,...—=
. 1 Xi+t 1 "2
Numerical = e =—1 - 28
o Atln(X’ ) i The At (28)
™ 1 - Am,n?

(See Fig. 5b). Depending on the size of 4+, the same algo-
rithm quickly converges to the linear growth rate or
accurately follows time evolution.
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V. SPATIAL RESOLUTION AND CONVERGENCE TESTS

Questions of spatial resolution take on greater impor-
tance in nonlinear calculations, where smali-scale eddies
gencrated by the nonlinear interactions act as an energy
sink. The set of Fourier components must include the dam-
ped modes at these scales, and Ax must be small enough to
resolve the radial structure. Adding an equilibrium flow
introduces a new length scale that must be resolved: the
eigenfunction shift £,. Information from the linear results of
the previous section, such as the size of £, and the boundary
between stable and unstable modes in k -space, can be used
to estimate the appropriate spatial resolution. In this sec-
tion, we outline the guidelines we have used. Since linear
criteria may not always be sufficient in a nonlinear calcula-
tion, the resolution requirements have been numerically
tested for accuracy and convergence. The results verify that
linear guidelines can be relevant when seiecting the spatial
resolution for a nonlinear calculation.

An upper limit of Ax/p, < I can be imposed on the radial
step size. When an equilibrium velocity is present, Ax/p, <
(€4 }omin 18 needed to resolve the shift in the linear eigenfune-
tion caused by the flow shear. We chose A4x/p, =0.10 in the
previous section as a resuit. In a nonlinear calculation,
small-scale eddies could reduce this limit even further.
However, such a calculation without flow shear shows that
dx/p,=0.101s also sufficient to resolve the radial structure
in this case (Fig. 6). Thus, 4x/p, < (). can be used for
cases with equilibrium vefocity, while Ax/p, <1 is a good
general limit.

In the presence of an equilibrium velocity, there is also a
lower limit on Ax. It is not a numerical condition associated
with resolving a physical scale of the system, but concerns
excluding nonphysical solutions associated with the par-
ticular model we have used. The linear dispersion relation of
Eq. (22) predicts that modes with large radial mode number
{I = ) will be unstable for normalized fiow shear above a
critical value:

erit _ o f s kDT
ari=e=2(g )+ (52)]

This instability is not a realistic result, but rather, the conse-
quence of a limitation in our model. The assumption of
highly collisional ions, used to obtain a single equation,
leads to a reduction in linear damping at the largest /
However, Q" increases as / decreases. Since only those /’s
that are consistent with the radial resolution are relevant, a
minimum Ax can be chosen so that the largest resolvable /
is stable for the flow shear of interest. Small k, gives the
most restrictive 25, since W), ~k ;"% Using the smallest
k,, Eq. (22) can be solved to find the stable mode with the
largest [ for the given value of .. If this is to be the last
resolvable mode, the resolution per peak must be a mini-

(29)
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FIG. 6. Radial structure of m, n =24, 16 Fourier component during
the nonlinear phase of a calculation with multiple rational surfaces, large
L./L, parameters, and zero flow shear, The insct shows that this can be
resolved with 4x =0.10p,.

mum for the /4 | peaks. In this case, the mode width W is
spanned by one grid point at the left edge, /+ 1 grid points
at the peak tops, / grid points between the peaks, and one
grid point at the right edge—in all, 2/+ 3 grid points. The
minimum radial grid size is then 4x =W, /(2[+3). For
m=73 and large L /L, parameters, the largest resolvable /
consistent with our choice of 4x/p, = 0.10 is about 16. Solu-
tions of Eq. (22) show that modes with ! < 16 are stable for
all £, used in the numerical calculations. Thus, 4x/p, =0.10
satisfies the linear requirements for both the upper and
lower limits on 4x.

Tests of convergence with Ax were performed on the
numerical solutions, They used large L /L, parameters, slab
length a = 30p,, time step dt, = 2, At = 5, and were centered
around the base value of Ax/p,=0.10. There were 54
Fourier components along the mfn=3/2 helicity at the
single rational surface r = ry. Spatial structure in the non-
linear couplings near the resonant surface causes a reduc-
tion in linear damping at small k, [7] that prevents the
fluctvations from saturating. Since the energy (E) grows
rapidly, the comparisons use the growth rate y.=
(2E)~" (dE/dt) as a more sensitive measure. Reducing the
radial grid spacing to 4x/p,=0.05 (without flow shear) or
dx/p,=0.04 (with flow shear) leads to a small change in y.
during the nonlinear evolution (Fig. 7a). This is in sharp
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FIG. 7. (a) For calculations with a single rational surface, decreasing Ax by a factor of 2-2.5 does not produce much change in the time evolution
of the growth rate y. Since large flow shear (€2, =0.88) produces linear stability, these cases are started at large amplitude to facilitate nonlinear effects.
(b) For calculations with a single rational surface, increasing the radial grid spacing to 4x = 1.00p, greatly alters the time evolution of yz in the nonlinear
regime. (¢) For calculations with large flow shear (£2, = 0.88), decreasing Ax by a factor of 2.5 does not change the energy distribution, E,, ,(¢)/E(t}, given
the error bars from time-averaging over 3 < 2,7 x 10™* < 4. (d) For calculations without flow shear, increasing the radial grid spacing to 4x=1.00p, alters
the instantaneous energy distribution, E,, (1)/E(?), at 2,7 x 10~* =423 in the nonlinear regime.

contrast to the result of increasing the grid spacing to
Axfp,=1. In the zero flow-shear case, y. is only slightly
altered during the early (single-mode-dominated) phase of
the nonlinear evolution. Later, however, it diverges strongly
from the value for Adx/p, =0.10 (Fig. 7b). Since radial
variations in the couplings between the fluctuations prevent
saturation, it is also important to verify that the distribution
of energy is converged. When energy spectra (normalized to
total energy) are compared as Ax is varied, the results are
similar to those obtained for y .. With flow shear, a reduction
in 4x/p, produces no change in the spectrum, given the
error bars from time-averaging over an interval of stationary
v (Fig. 7c). There is no such interval without flow shear, so
an instantaneous comparison is made. The spectrum
obtained with dx/p, = | differs markedly from the others,
which are virtually identical (Fig. 7d). Thus, 4dx/p, <
min(£,, 1) appears to be an appropriate guide for obtaining
solutions converged with respect to Ax. Within this limit,
nonlinear solutions are not very sensitive to variations in
radial step size.

The rate of error accumulation in converged cases is small

enough to allow nonlinear solutions to remain accurate. For
Ax/p, <1 and zero flow shear, the spatial discretization
error remains below 1% into the nonlinear evolution. In
contrast, for Ax/p_ =1, the spatial discretization error rises
to almost 100% in the same interval of time. As Ax varies,
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FIG. 8. For cases in which dx differs by a given factor, the spatial
discretization errot (6E)gp varies as the square of this factor.
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the spatial discretization error scales as (4x)* (Fig. 8). This
is consistent with the accuracy of the three-point radial dif-
ferences used in the algorithm. As a result of this scaling, Ax
can be adjusted to reduce the spatial discretization error to
a desired level.

Questions of radial resolution must be addressed care-
fully in the strong flow-shear regime, where Eq. (4) can
become singular. When the replacements d/éy — ik, and
0/t - —iw are made in Eq. (5), the coefficient of —p2 V2 71,
the largest radial derivative in Eq. (4), becomes w—
k,Vo(x). Writing the Doppler-shifted frequency @ as
@+ iy, this coefficient can be made proportional to
X — Zgng, Where

De+iN 1
e (5525 1),
*a 5

Unstable modes have y>0, and the complex number z,,
lies above the real axis. Under these circumstances, the
equation is not singular. However, strong flow shear greatly
reduces y for an unstable mode, moving z,, close to the real
axis. As the flow shear stabilizes the mode, a singularity at
x =Real(z;,,) should appear. It would be of great interest
to investigate the performance of the algorithm under these
condttions. However, the values of 2. that can be used are
limited by the critical value of Eq. (29). Above this
threshold, there are unrealistic linear instabilities at large /.
To avoid such instabilities and ensure meaningful results,
we have restricted attention to €2, < 1. In these cases, the
fluctuations grow, either linearly or nonlinearly. There is no
singularity, and the limits on radial resolution discussed
above are appropriate. Since the high ion collisionality
assumed for this model causes the reduction in linear damp-
ing at large [ that leads to the instabilities, the large flow-
shear regime can be explored only with an improved model.

Next, we estimate the number of Fourier components
needed for a resolved calculation. To ensure that the non-
linear evolution is dominated by turbulent energy transfer,
there must be sufficient coupling between the energy source
and the energy sink. For large L /L, parameters, the growth
rates calculated from Eq. (22) show that modes with 3 g
m < 54 are unstable. For calculations including the single
rational surface at r = r,,, the maximum m is chosen to be 81.
This provides a range of linearly stable modes that can act
as an energy sink. Good coupling between the peak of the
source (m = 21) and the sink is guaranteed by keeping every
component along the resonant m/n = 3/2 helicity. The total
number of Fourier components is then 34, counting both
{(m, n) and (—m, —n). In a case with multiple rational sur-
faces, the object is to provide damped modes along cach sur-
face and a density of surfaces that permits coupling between
modes of different helicities. In practice, a balance is struck
between the number of low-order rational surfaces that can
be included and the slab size required for them, given a

(30)
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FIG. 9. The radial distribution of Fourier components for numerical
calculations with multiple rational surfaces. The closed circles indicate the
case with 438 components. The open circles show the additions in the
948-component case.

realistic safety factor g{x). The number of components is
then determined by selecting the maximum # so that there
are damped modes on each surface. We have used a
g-profile that includes 129 rational surfaces with resonant
helicities between m/n = 10/7 and 11/7. With the maximum
r equal to 54, there are a total of 438 components (Fig. 9).
(In this case, the rational surface at r = r,, still has the same
number of components along the 3/2 resonant helicity.)

The number of components in these basic sets was then
varied to determine if the damped modes provide a sufficient
energy sink at large k,. In a converged calculation, quan-
tities that depend on sums over components, such as yand
the spatial discretization error, should be insensitive to an
increase in the number of damped modes. It is also impor-
tant that the spectrum of squared amplitudes decrease as
k; 2 or faster, in the region of damped modes. Only then
can the root mean square (RMS) wavenumber be defined.
For a case with a single rational surface, the convergence
test consisted of changing the maximum m along the
min=13/2 helicity. The number of components was
increased from 54 to 108 to 216, and the number of linearly
damped modes (m = 54} from 20 to 74 to 182, Each case
was initialized with a set of components having equal
amplitudes and random phases. The initial spatial structure
was Gaussian, centered on the rational surface at ¥ = ry, and
every component had the same width, The radial step size
was Ax/p, =0.10, and the other parameters were the same
as those used in the Ax convergence tests. The calculations
proceeded through a period of nonlinear evolution in which
the spatial discretization error was 5% or less.

For the set of 54 components, only the sums over com-
ponents are converged. In the case of zero flow shear,
increasing the number of components to 216 causes only a
30% reduction in a spatial discretization error of less than
1 %. With Q,=10.88, the reduction is 5% in a level of about
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FIG. 10. For calculations with a single rational surface, increasing the
number of Fourier comiponents by a factor of 4 does not change the
evolution of the growth rate yg, on the average,

5%. Furthermore, the addition of modes at large k, does
not produce a significant change in v, (Fig. 10). In the case
with £, =088, there are some differences in the initial
period, during which the mode amplitudes are adjusting
themselves in k,-space, but the later noniinear growth is
very similar, on the average. In contrast, the squared-
amplitude spectrum is quite sensitive to these changes. At
the end of the calculation with 54 components, the instan-
taneous spectrum is flat in the region of damped modes.
When the number of components is increased to 108, it falls
off as k,*7. For 216 components, there is some accumula-
tion at the largest k,, and the fall-off is less steep. Thus, the
basic component set cannot produce a converged squared-
amplitude spectrum for the damped modes, but the non-
linear couplings between modes with smali and large &, that
determine the nonlinear growth rate do not appear to be
very sensitive to changes in the number of components.
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FIG. 11. For calculations with multiple rational surfaces, increasing

the number of Fourier components from 438 to 948 increases the instan-
taneous spatial discretization error (E)L5 by an average of 36% in the
steady state.
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Similar results have been obtained for a calculation with
multiple rational surfaces. In this case, coupling between dif-
ferent helicities provides an additional mechanism for
energy transfer to damped modes. Saturation can now be
achieved, even with fewer damped modes along a particular
rational surface. For the basic set of 438 components, the
RMS fluctuation level in the steady state is converged, but
the time-averaged squared-amplitude spectrum is not. Con-
vergence tests were performed with zero flow shear and
small L,/L, parameters. The slab length was changed to
a = 60p, to accommodate the large number of rational sur-
faces. A radial step size of Ax/p, = 0.10 was retained, while
dt, =10 was used during the nonlinear evolution. The total
number of components was changed from 438 to 948 by
increasing the maximum » to 80 (Fig. 9). Although this
added linearly stable modes to each rational surface, the
time-averaged RMS fluctuation level at r = r;, decreased by
only 18%. The spatial discretization error in the steady
state was also used to test the convergence of sums over
components. An instantaneous spatial discretization error
was obtained from Eq. (16) for a one-step scheme. At time
t=idt,

nonlinear
al E i—1

5Elnsl____ )
0B)sp |dE/dt| + | SO + | SK]|

(31)

The normalizing terms, defined in Egs. {19}-(20), use infor-
mation from time steps i and 7/ — 1. The first is a difference,
and the last two are averages. When the number of com-
ponents was increased to 948, the average error in the
stecady state increased by 36 % (Fig. 11). This suggests that
the energy transfer to damped modes has not been strongly
affected. The distribution of damped modes in k,-space is
significantly altered, however (Fig. 12). Although adequate
to produce convergence in sums over compoenents, the 438-
component set cannot resolve the time-averaged squared-
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FIG. 12. The decay in the time-averaged squared-amplitude spectrum
at Jarge &, for a calculation with multiple rational surfaces can be resolved
with 948 Fourier components, but not with 438 components.
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amplitude spectrum. In general, though, grid spacings and
component sets chosen according to the guidelines given in
this section will be a good starting point for attaining
convergence.

YL TEMPORAL RESOLUTION AND
CONVERGENCE TESTS

The final issue to be addressed is the selection of an
appropriate time-step size, 4¢. As alluded to in Section III,
At must be small enough to resolve the fastest time scale
under consideration. For the linear problem without flow
shear, this is given by a real frequency wy~w, =k, V, .
Although the linear algorithm converges for very large time
steps, obtaining a solution becomes more difficult for
wp 4t 2 1 (Fig. 5a). Thus, we limit ourselves to @, A1~ 1,
This explains the choice of dt,=Q; 4t=10,000 in Sec-
tion IV. Adding a strong flow introduces a large Doppler
shift: @ r~w, —k, Vi(x). This imposes a more restrictive
requirement on dt,, which must be small enough to resoive
the Doppler-shifted frequency. Since @, is a maximum at
x= —(0/2), we choose

i p. Vof a
At = (k L. ¢, \2L,
Dr A max = l’p’lm‘".’x) [Ln+ <5 (ZLV

)] dig<1. (32)
In nonlinear calculations, the fastest physical phenomena
can no tonger be described by linear time scales on the order
of w,!. The appropriate scale is associated with the convec-
tion of the smail-scale eddies. The linear estimate for di,
from a case with flow shear, Eq. (32), is too large to use with
the nonlinear algorithm, unlike the linear estimate for Ax
described in Section V. From experience, (®,, 4.~ 3%
has been found to permit stable evolution. This means that
dto < 10 for large L /L, parameters.

As the time step is changed from dry =5 to dr, =0.2, the
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FIG. 13. For cases in which 4r differs by a given factor, the energy
conservation error (dE)pc has a roughly linear variation with this factor.
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FIG. 14. For the two-step algorithm, the energy conservation error
(8E)ge, which is sensitive to nonzero A, asymptotes to the spatial
discretization error (6E)gp, which is not.

numerical solutions do not show much sensitivity. Con-
vergence tests used a single rational surface at r=r;, 54
components along the m/n = 3/2 helicity, Ax/p,=0.10, large
L./L, parameters, and zero flow shear. The one-step algo-
rithm of Eq. (14) was considered first. Reducing the time
step from dr, = 5 to dt, = 1 changes v by about 16 % during
the nonlinear evolution. A further reduction to dt, = 0.2 has
little additional effect. With the two-step algorithm of
Eq. (15), dty =35 produces an evolution of y, identical to
that for the dr, = 0.2 one-step case. Reducing the time step
produces no additional difference.

The energy conservation properties of the one-step and
two-step algorithms show that each is accurate to the
proper order in 4¢. The energy conservation error for the
one-step algorithm shouid scale linearly with the time step,
since solutions are accurate to order At¢, while the
trapezoidal integration of Eq. (21} is accurate to order
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FIG. 15. The energy conservation error (3E)g. is reduced by a factor
of 10, for the same 4¢, on using the two-step scheme rather than the one-
step scheme. A similar result could be obtained by reducing A a factor of
25 in the one-step scheme.
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(4¢)%. Changing the time step in the zero-flow case does
affect this error, and the scaling is closer to linear than quad-
ratic (Fig. 13). The energy conservation error in the two-
step case does not scale with the time step. In this more
accurate scheme, the contribution from nonzero At becomes
smaller than the contribution from finite spatial resolution.
This is reflected in the fact that the energy conservation
error asymptotes to the spatial discretization error in the
nonlinear regime (Fig. 14). However, for a given Az, two-
step results can have less error than one-step solutions. With
dry = 5, the energy conservation error is about an order of
magnitude smaller for the same number of steps in the non-
linear regime (Fig. 15). This error is roughly equivalent to
the level in the one-step dt, = 0.2 case, where the evolution
of y - is identical. Thus, the two-step algorithm is accurate to
an order higher than A:r. The error results support the con-
clusion that these algorithms can be used to produce
accurate nonlinear solutions.

VII. CONCLUSIONS

The focus of this paper has been a single-equation model
of long-wavelength drift wave turbulence. The purpose was
to present an algorithm that can accurately calculate the
time evolution of these waves, which have real frequency
wg~®,,, in the presence of a strong poloidal flow with
shear. The numerical scheme we have proposed is linearly
implicit and nonlinearly explicit. Although the linear part
was originally used to calculate purely growing modes, we
have demonstrated that it works equally well for modes
with a real frequency. Numerical solutions of the model
equation agree with the predictions of linear analytic theory
for a large range of time steps, up to and including
wg At ~ 1. This agreement holds both with and without the
sheared flow.

Certain guidelines for choosing the proper resolution for
a nonlinear calculation have been proposed. Although the
basic length scale is given by the gyroradius p,, a radial step
size of Ax/p, <min{&,, 1) is required to resolve both the
flow-shear-induced shift in the linear eigenfunction £, and
the nonlinear structure. Damped modes are required on
each rational surface to act as an energy sink. In estimating
the required number of Fourier components, an appreciable
fraction of linearly stable modes should be included.
Although w, At~ 1 is adequate for iinear drift waves, a
smaller time step (w, Af~ 35) is needed to resolve the
nonlinear evolution.

Within these limits, numerical solutions both with and
without flow shear are rather insensitive to variations in 4x

SIDIKMAN, CARRERAS, AND GARCIA

and 4t. Quantities that depend on Fourier sums do not vary
strongly as the number of components is increased, but the
spectral falloff at large k, can be resolved only for the larger
numbers of damped modes. The accuracy of the solutions is
reflected in the accumulated error, calculated from checks
on energy conservation. It remains below 5% into the non-
linear evolution. In addition, this error shows the expected
scaling with Ax and 4¢, so that it can be reduced to a desired
level by adjusting the resolution. Thus, the numerical
method described in this paper can be used to calculate the
evolution of waves with a real frequency in the presence of
strongly sheared flow.
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